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Abstract
The Hardy-Littlewood—-P6lya (HLP) inequality [1] states thatif a € I, b €
19 and
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In this article, we prove the HLP inequality in the case where A = 1,p =
q = 2 with a logarithm correction, as conjectured by Ding [2]:
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In addition, we derive an accurate estimate for the best constant for this
inequality.
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1. Introduction

The well-known Hardy—Littlewood—SoboleV (HLS) inequality states that
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forany f € L"(R") and g € L*(R") provided that
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Hardy and Littlewood also introduced a double weighted inequality which
was later generalized by Stein and Weiss [3]:
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wherel < r,s<o00,0<A<n a+ >0,
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To obtain the best constant in the weighted Hardy-Littlewood-Sobolev
(WHLS) inequality (2), one can maximize the functional
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with the constraints || f||, = |lg|ls = 1. On the other hand, the Hardy—
Littlewood-Pélya (HLP) inequality[1} inequality 381, p.288] [4]—a discrete
analogue of the HLS inequality—is provided in the setting of (P-spaces.
More precisely, the HLP inequality states thatif a € I, b € [ and
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where the constant C' depends on p and ¢ only.

The following theorem was conjectured by X. Ding [2]. It can be regarded
as an extension of the well-known HLP inequality in the case p = ¢ = 2
and A = 1 with a logarithm correction:

Theorem 1. Letp=qg=2and A =2 — = 1. Ifa,b € [P, then
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In fact we shall prove instead the following theorem in which theorem [1|is
a consequence.

Theorem 2. Let

AN = max Z arbs (5)
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then
2InN -2 <Ay <2InN +2(1 —In2).

Consequently we have:
AN <2InN +1.

2. Proof of Theorem [2

We prove theorem 2]in three main steps.
In step 1, we choose a, = b, = ﬁ and calculate that
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This shows that Ay > 2In N — 2.

In step 2, we derive the Euler-Lagrange equations for the maximizers a and
b.

In step 3, we use the Euler-Lagrange equations to show that

AN <2InN +2(1—-1n2),

thus completing the proof. The calculations in steps 1 and 3 will make use
of the following inequalities. For a positive integer M, we have that

<l+InM
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Step 1: Leta, = b, = ﬁ, then 3" a? = 3" b2 = 1 where the summation is
from 1 to N. It follows that
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Using the definition of Ay along with the preceding calculations, we arrive
with the following estimate:

Ay >2InN — 2. (6)

Step 2: We derive the Euler-Lagrange equations for the maximizers of (5).

Let
wev= ¥ oY @y wr 0

r#s,1<r,s<N 1<r<N 1<s<N

Then by our definition of AN, we have J N (a,b) < 0, and by compactness,
there exist elements @ and b with ||a||2 = ||b||2 = 1 such that

JN(E, 5) = 0.

Thus, we must have 0 = d%ﬂJ ~(a,b)

(a=a,b=b)
Taking the derivative directly in (7) about @,, we obtain:

b
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Similarly, taking the derivative about b, we obtain:
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Combining the above two equations together, we obtain the Euler-Lagrange
equations:

bs
ANG, = E —_—
s#r,1<s<N ‘T; S’ (8)
— a’?”
Anbs = .
A V=

r#s,1<r<N

Step 3: Here we will show that Ay < 2In N + 2(1 —In 2).
With a change of sign if necessary, we may assume that

ary = max{|a,|,|bs| :1<rs< N} >0.

In fact, we may assume that all components are non-negative (and conse-
quently positive by (8)), and a,, is the maximum for some ro. Then

W=D o S 2 e s S 2 T
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Hence
AN <2InN +2(1—-1n2). )

Combining the estimates (6) and (9) yields

2InN =2 <Ay <2InN +2(1 —In2).
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