AN EXTENSION OF THE HARDY-LITTLEWOOD-PÓLYA INEQUALITY

Congming Li, John Villavert
Department of Applied Mathematics
University of Colorado at Boulder, Boulder, CO, USA 80309

Abstract

The Hardy-Littlewood-Pólya (HLP) inequality [1] states that if $a \in l^{p}, b \in$ l^{q} and

$$
p>1, q>1, \frac{1}{p}+\frac{1}{q}>1, \lambda=2-\left(\frac{1}{p}+\frac{1}{q}\right),
$$

then

$$
\sum_{r \neq s} \frac{a_{r} b_{s}}{|r-s|^{\lambda}} \leq C_{p, q}\|a\|_{p}\|b\|_{q} .
$$

In this article, we prove the HLP inequality in the case where $\lambda=1, p=$ $q=2$ with a logarithm correction, as conjectured by Ding [2]:

$$
\sum_{r \neq s, 1 \leq r, s \leq N} \frac{a_{r} b_{s}}{|r-s|^{\lambda}} \leq(2 \ln N+1)\|a\|_{2}\|b\|_{2} .
$$

In addition, we derive an accurate estimate for the best constant for this inequality.

Keywords: Hardy-Littlewood-Pólya inequality, logarithm correction 2000 MR Subject Classification: 46A45, 46B45, 49J40

1. Introduction

The well-known Hardy-Littlewood-Sobolev (HLS) inequality states that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{f(x) g(y)}{|x-y|^{\lambda}} d x d y \leq C_{r, \lambda, n}\|f\|_{r}\|g\|_{s} \tag{1}
\end{equation*}
$$

[^0]for any $f \in L^{r}\left(\mathbb{R}^{n}\right)$ and $g \in L^{s}\left(\mathbb{R}^{n}\right)$ provided that
$$
0<\lambda<n, 1<r, s<\infty \text { with } \frac{1}{r}+\frac{1}{s}+\frac{\lambda}{n}=2 .
$$

Hardy and Littlewood also introduced a double weighted inequality which was later generalized by Stein and Weiss [3]:

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{f(x) g(y)}{|x|^{\alpha}|x-y|^{\lambda}|y|^{\beta}} d x d y\right| \leq C_{\alpha, \beta, r, \lambda, n}\|f\|_{r}\|g\|_{s} \tag{2}
\end{equation*}
$$

where $1<r, s<\infty, 0<\lambda<n, \alpha+\beta \geq 0$,

$$
1-\frac{1}{r}-\frac{\lambda}{n}<\frac{\alpha}{n}<1-\frac{1}{r} \text { and } \frac{1}{r}+\frac{1}{s}+\frac{\lambda+\alpha+\beta}{n}=2 .
$$

To obtain the best constant in the weighted Hardy-Littlewood-Sobolev (WHLS) inequality (2), one can maximize the functional

$$
J(f, g)=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{f(x) g(y)}{|x|^{\alpha}|x-y|^{\lambda}|y|^{\beta}} d x d y
$$

with the constraints $\|f\|_{r}=\|g\|_{s}=1$. On the other hand, the Hardy-Littlewood-Pólya (HLP) inequality[1, inequality 381, p.288] [4]-a discrete analogue of the HLS inequality-is provided in the setting of l^{p}-spaces. More precisely, the HLP inequality states that if $a \in l^{p}, b \in l^{q}$ and

$$
p>1, q>1, \frac{1}{p}+\frac{1}{q}>1, \lambda=2-\left(\frac{1}{p}+\frac{1}{q}\right),
$$

then

$$
\begin{equation*}
\sum_{r \neq s} \frac{a_{r} b_{s}}{|r-s|^{\lambda}} \leq C\|a\|_{p}\|b\|_{q} \tag{3}
\end{equation*}
$$

where the constant C depends on p and q only.
The following theorem was conjectured by X. Ding [2]. It can be regarded as an extension of the well-known HLP inequality in the case $p=q=2$ and $\lambda=1$ with a logarithm correction:

Theorem 1. Let $p=q=2$ and $\lambda=2-\frac{1}{p}-\frac{1}{q}=1$. If $a, b \in l^{p}$, then

$$
\begin{equation*}
\sum_{r \neq s, 1 \leq r, s \leq N} \frac{a_{r} b_{s}}{|r-s|} \leq 2(\ln N+1)\|a\|_{2}\|b\|_{2} . \tag{4}
\end{equation*}
$$

In fact we shall prove instead the following theorem in which theorem 1 is a consequence.

Theorem 2. Let

$$
\begin{equation*}
\lambda_{N}=\max _{\sum a_{r}^{2}=\sum b_{r}^{2}=1} \sum_{r \neq s, 1 \leq r, s \leq N} \frac{a_{r} b_{s}}{|r-s|}, \tag{5}
\end{equation*}
$$

then

$$
2 \ln N-2 \leq \lambda_{N} \leq 2 \ln N+2(1-\ln 2) .
$$

Consequently we have:

$$
\lambda_{N}<2 \ln N+1
$$

2. Proof of Theorem 2

We prove theorem 2 in three main steps.
In step 1, we choose $a_{r}=b_{r}=\frac{1}{\sqrt{N}}$ and calculate that

$$
\sum_{r \neq s, 1 \leq r, s \leq N} \frac{a_{r} b_{s}}{|r-s|} \geq 2 \ln N-2
$$

This shows that $\lambda_{N} \geq 2 \ln N-2$.
In step 2, we derive the Euler-Lagrange equations for the maximizers \bar{a} and \bar{b}.
In step 3, we use the Euler-Lagrange equations to show that

$$
\lambda_{N} \leq 2 \ln N+2(1-\ln 2)
$$

thus completing the proof. The calculations in steps 1 and 3 will make use of the following inequalities. For a positive integer M, we have that

$$
\ln (M+1) \leq \sum_{l=1}^{M} \frac{1}{l} \leq 1+\ln M
$$

and

$$
\sum_{l=1}^{M} \ln l \geq M \ln M-M+1
$$

Step 1: Let $a_{r}=b_{r}=\frac{1}{\sqrt{N}}$, then $\sum a_{r}^{2}=\sum b_{r}^{2}=1$ where the summation is from 1 to N. It follows that

$$
\begin{aligned}
\sum_{r \neq s, 1 \leq r, s \leq N} \frac{a_{r} b_{s}}{|r-s|} & =\frac{1}{N} \sum_{r \neq s, 1 \leq r, s \leq N} \frac{1}{|r-s|} \\
& =\frac{2}{N} \sum_{s=1}^{N-1} \sum_{r=s+1}^{N} \frac{1}{r-s}=\frac{2}{N} \sum_{s=1}^{N-1} \sum_{l=1}^{N-s} \frac{1}{l} \\
& \geq \frac{2}{N} \sum_{s=1}^{N-1} \ln (N-s+1)=\frac{2}{N} \sum_{l=1}^{N} \ln l \\
& \geq \frac{2}{N}(N \ln N-N+1) \\
& \geq 2(\ln N-1) .
\end{aligned}
$$

Using the definition of λ_{N} along with the preceding calculations, we arrive with the following estimate:

$$
\begin{equation*}
\lambda_{N} \geq 2 \ln N-2 \tag{6}
\end{equation*}
$$

Step 2: We derive the Euler-Lagrange equations for the maximizers of (5). Let

$$
\begin{equation*}
J_{N}(a, b)=\sum_{r \neq s, 1 \leq r, s \leq N} \frac{a_{r} b_{s}}{|r-s|}-\lambda_{N} \sqrt{\sum_{1 \leq r \leq N} a_{r}^{2} \sum_{1 \leq s \leq N} b_{s}^{2}} . \tag{7}
\end{equation*}
$$

Then by our definition of λ_{N}, we have $J_{N}(a, b) \leq 0$, and by compactness, there exist elements \bar{a} and \bar{b} with $\|\bar{a}\|_{2}=\|\bar{b}\|_{2}=1$ such that

$$
J_{N}(\bar{a}, \bar{b})=0 .
$$

Thus, we must have $0=\left.\frac{d}{d a_{r}} J_{N}(a, b)\right|_{(a=\bar{a}, b=\bar{b})}$.
Taking the derivative directly in (7) about \bar{a}_{r}, we obtain:

$$
\sum_{s \neq r, 1 \leq s \leq N} \frac{\bar{b}_{s}}{|r-s|}-\lambda_{N} \bar{a}_{r}=0
$$

Similarly, taking the derivative about \bar{b}_{s}, we obtain:

$$
\sum_{r \neq s, 1 \leq r \leq N} \frac{\bar{a}_{r}}{|r-s|}-\lambda_{N} \bar{b}_{s}=0 .
$$

Combining the above two equations together, we obtain the Euler-Lagrange equations:

$$
\left\{\begin{array}{l}
\lambda_{N} \bar{a}_{r}=\sum_{s \neq r, 1 \leq s \leq N} \frac{\bar{b}_{s}}{|r-s|} \tag{8}\\
\lambda_{N} \bar{b}_{s}=\sum_{r \neq s, 1 \leq r \leq N} \frac{\bar{a}_{r}}{|r-s|} .
\end{array}\right.
$$

Step 3: Here we will show that $\lambda_{N} \leq 2 \ln N+2(1-\ln 2)$.
With a change of sign if necessary, we may assume that

$$
a_{r_{0}}=\max \left\{\left|\bar{a}_{r}\right|,\left|\bar{b}_{s}\right|: 1 \leq r, s \leq N\right\}>0 .
$$

In fact, we may assume that all components are non-negative (and consequently positive by (8p), and $a_{r_{0}}$ is the maximum for some r_{0}. Then

$$
\begin{aligned}
\lambda_{N} & =\sum_{s \neq r_{0}, s=1}^{N} \frac{\bar{b}_{s}}{a_{r_{0}}\left|r_{0}-s\right|} \leq \sum_{s \neq r_{0}, s=1}^{N} \frac{\left|\bar{b}_{s}\right|}{\left|a_{r_{0}}\right|\left|r_{0}-s\right|} \leq \sum_{s \neq r_{0}, s=1}^{N} \frac{1}{\left|r_{0}-s\right|} \\
& =\sum_{s=1}^{r_{0}-1} \frac{1}{r_{0}-s}+\sum_{s=r_{0}+1}^{N} \frac{1}{s-r_{0}}=\sum_{l=1}^{r_{0}-1} \frac{1}{l}+\sum_{l=1}^{N-r_{0}} \frac{1}{l} \\
& \leq 2+\ln \left(r_{0}-1\right)+\ln \left(N-r_{0}\right)=2+\ln \left(\left(r_{0}-1\right)\left(N-r_{0}\right)\right) \\
& \leq 2+\ln \left(\frac{N-1}{2}\right)^{2} \leq 2+\ln \left(\frac{N}{2}\right)^{2}=2+2(\ln N-\ln 2) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\lambda_{N} \leq 2 \ln N+2(1-\ln 2) \tag{9}
\end{equation*}
$$

Combining the estimates (6) and (9) yields

$$
2 \ln N-2 \leq \lambda_{N} \leq 2 \ln N+2(1-\ln 2) .
$$

3. Acknowledgements

The authors would like to acknowledge the NSF for their support through the grants DMS-0908097 and EAR-0934647.

References

[1] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities, volume 2. Cambridge at the University Press, 1952.
[2] X. Ding. In private communication.
[3] E. B. Stein and G. Weiss. Fractional integrals in n-dimensional Euclidean space. J. Math. Mech., 7(1958).
[4] G. H. Hardy, J. E. Littlewood, and G. Pólya. The maximum of a certain bilinear form. Proc. L.M.S. (2), 25(1926):265-282.
[5] E. B. Stein and G. Weiss. Introduction to Fourier Analysis on Euclidean Spaces, volume Princeton. Princeton University Press, 1971.
[6] E. Lieb. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. of Math., 118(1983):349-374.
[7] W. Chen and C. Li. Classification solutions of some nonlinear elliptic equations. Duke Math. J., 63(1991):615-622.
[8] C. Li W. Chen and B. Ou. Classification of solutions for an integral equation. Comm. Pure and Appl. Math., 59(2006):330-343.
[9] W. Chen and C. Li. The best constant in some weighted Hardy-LittlewoodSobolev inequality. Proc. AMS, 136(2008):955-962.

[^0]: Email addresses: congming.li@colorado.edu (Congming Li),
 john.villavert@colorado.edu (John Villavert)

